Publications

70) Coal Ash Triggers an Elevated Temperature Landfill Development: Lessons from the Bristol Virginia Solid Waste Landfill Neighboring Community. R.P. Witt and M.I. Guzman. Accepted for publication in Environments (2024).

69) Environmental Sustainability in Gynecologic Oncology. M.V. Becker, L.M. Harbin, E. Knapp, R.T. Nair, M.I. Guzman, D.A. Atwood, S.Z. Ali, C.S. Dietrich. Gynecology Oncology Reports (2024) 55, 101499, DOI: 10.1016/j.gore.2024.101499.

68) In-situ Electrochemistry of Formate on Cu thin films using ATR-FTIR Spectroscopy and X-ray Photoelectron Spectroscopy. J. Hsu, M.S.E. Houache, Y. Abu-Lebdeh, R.A. Patton, M.I. Guzman, and H.A. Al-Abadleh. Langmuir (2024), 40, 2377–2384, DOI: 10.1021/acs.langmuir.3c03660

67) Conversion of Catechol to 4-Nitrocatechol in Aqueous Microdroplets Exposed to O3 and NO2. M.S. Rana, S.T Bradley, and M.I. Guzman. ACS ES&T Air (2024), 1, 80–91, DOI: 10.1021/acsestair.3c00001

66) Apparatus and method for trace gas detection utilizing unmanned aerial vehicles. M.I. Guzman and T.J. Schuyler. Patent ID US 11761937 B2, Published on 09/19/2023. 

65) Oxidation of Phenolic Aldehydes by Ozone and Hydroxyl Radicals at the Air-Solid Interface. M.S. Rana and M.I. Guzman. ACS Earth and Space Chemistry (2022), 6, 2900-2909, DOI: 10.1021/acsearthspacechem.2c00206.

64) Oxidation of Catechols at the Air-Water Interface by Nitrate Radicals. M.S. Rana and M.I. Guzman. Environmental Science and Technology (2022), 56, 15437-15448. DOI: 10.1021/acs.est.2c05640.

62) Interfacial Oxidative Oligomerization of Catechol. M.I. Guzman, E.A. Pillar-Little, and A.J. Eugene. ACS Omega (2022), 7, 36009–36016 . DOI: 10.1021/acsomega.2c05290

61) Reactivity of aminophenols in forming nitrogen-containing brown carbon from iron-catalyzed reactions. H.A. Al-Abadleh, F. Motaghedi, W. Mohammed, M.S. Rana, K.A. Malek, D. Rastogi, A.A. Asa-Awuku, and M.I. Guzman. Communications Chemistry (2022) 5, 112. DOI: 10.1038/s42004-022-00732-1. PDF 

60) Surface Oxidation of Phenolic Aldehydes: Fragmentation, Functionalization, and Coupling Reactions. M.S. Rana and M.I. Guzman. Journal of Physical Chemistry A (2022), 126, 6502-6516; DOI: 10.1021/acs.jpca.2c04963

59) Characteristics and health effects of particulate matter emitted from a waste sorting plant. A. Barkhordari, M.I. Guzman, G. Ebrahimzadeh, A. Sorooshian, M. Delikhoon, M.J. Rastani, S. Golbaz, M. Fazlzadeh, R. Nabizadeh, A.N. Baghani. Waste Management (2022), 150, 244-256. PDF 

58) Research on oxygen solubility in aqueous amine solvents with common additives used for CO2 chemical absorption. T.B. Jorgensen, K. Abad, M. Sarma, M.I. Guzman, J.G. Thompson, K. Liu. International Journal of Greenhouse Gas Control (2022) 116, 103646, https://doi.org/10.1016/j.ijggc.2022.103646. PDF 

57) Characteristics and assessing biological risks of airborne bacteria in waste sorting plant. A.N. Baghani, S. Golbaz, G. Ebrahimzadeh, M.I. Guzman, M Delikhoon, M.J. Rastani, A. Barkhordarie, R. Nabizadeh. Ecotoxicology and Environmental Safety (2022)  232, 113272. https://www.sciencedirect.com/science/article/pii/S0147651322001129 

54) Dark iron-catalyzed reactions in acidic and viscous aerosol systems efficiently form secondary brown carbon. H.A. Al-Abadleh, M.S. Rana, W. Mohammed, and M.I. Guzman. Environmental Science and Technology (2021). 55, 209-219, DOI: 10.1021/acs.est.0c05678. PDF

52) Application of a Small Unmanned Aerial System to Measure Ammonia Emissions from a Pilot Amine-CO2 Capture System. T.J. Schuyler, B. Irvin, K. Abad, J.T. Thompson, K. Liu and M.I. Guzman. Sensors (2020), 20 (23), 6974; DOI: 10.3390/s20236974. PDF 

50) Oxidation of phenolic aldehydes by ozone and hydroxyl radicals at the air-water interface. M.S. Rana and M.I. Guzman. Journal of Physical Chemistry A (2020), 124, 8822-8833, DOI: 10.1021/acs.jpca.0c05944. PDF

49) University of Kentucky measurements of wind, temperature, pressure and humidity in support of LAPSE-RATE using multisite fixed-wing and rotorcraft unmanned aerial systems. S.C.C.Bailey, M.P. Sama, C.A. Canter, L.F. Pampolini, Z.S. Lippay, T.J. Schuyler, J.D. Hamilton, S.B. MacPhee, I.S. Rowe, C.D. Sanders, V.G. Smith, C.N. Vezzi, H.M. Wight, J.B. Hoagg, M.I. Guzman, and S.W. Smith.  Earth Syst. Sci. Data (2020), 12 12, 1759–1773, DOI: 10.5194/essd-12-1759-2020. PDF

48) Bioaerosol Size Effect in COVID-19 Transmission. M.I. Guzman. Preprints (2020), 202004.0093. DOI: 10.20944/preprints202004.0093.v2. PDF

Originally published on April 7, 2020. 

On the news: April 9, 2020: https://sciencex.com/wire-news/347859395/bioaerosols-size-effects-transmission-of-covid-19.html

47) Understanding the Effect of Host Structure of Nitrogen Doped Ultrananocrystalline Diamond Electrode on Electrochemical Carbon Dioxide Reduction. N. Wanninayake, Q. Ai, R. Zhou, M.A. Hoque, S. Herrell, M.I. Guzman, C. Risko, and D.Y. Kim. Carbon (2020), 408-419, DOI: 10.1016/j.carbon.2019.10.022.

46) Production of Singlet Oxygen (1O2) During the Photochemistry of Aqueous Pyruvic Acid: The Effects of pH and Photon Flux under Steady State O2(aq) Concentration. A.J. Eugene and M.I. Guzman. Environmental Science and Technology (2019), 53, 12425-12432, DOI: 10.1021/acs.est.9b03742.

45) Monitoring Tropospheric Gases with Small Unmanned Aerial Systems (sUAS) during the Second CLOUDMAP Flight Campaign. T.J. Schuyler, S.C.C. Bailey, and M.I. Guzman. Atmosphere (2019), 10 (8), 434, DOI:10.3390/atmos10080434. PDF

44) Crystal Structure of Zymonic Acid and a Redetermination of its Precursor, Pyruvic Acid. D. Heger, A.J. Eugene, S.R. Parkin and M.I. Guzman. Acta Crystallographica Section E: Crystallographic Communications (2019), E75, 858-862, DOI: 10.1107/S2056989019007072. PDF

43) Intercomparison of Small Unmanned Aircraft Systems (sUAS) Measurements for Atmospheric Science during the LAPSE-RATE Campaign. L. Barbieri, S.T. Kral, S.C.C. Bailey, A.E. Frazier, J.D. Jacob, J. Reuder, D. Brus, P.B. Chilson, C. Crick, C. Detweiler, A. Doddi, J. Elston, H. Foroutan, J. Gonzalez-Rocha, B.R. Greene, M.I. Guzman, A.L. Houston, A. Islam, O. Kemppinen, D. Lawrence, E.A. Pillar-Little, S.D. Ross, M. Sama, D.G. Schmale III, T.J. Schuyler, A. Shankar, S.W. Smith, S. Waugh, C. Dixon, S. Borenstein, and G. de Boer. Sensors (2019), 19 (9), 2179. DOI: 10.3390/s19092179. PDF

42) Using a Balloon Launched Unmanned Glider to Validate Real-Time WRF Modeling. T.J. Schuyler, S.M.I. Gohari, G. Pundsack, D. Berchoff, and M.I. Guzman. Sensors (2019), 19 (8), 1914, DOI: 10.3390/s19081914. PDF.

41) The Effects of Reactant Concentration and Air Flow Rate in the Consumption of Dissolved O2 During the Photochemistry of Aqueous Pyruvic Acid. A.J. Eugene and M.I. Guzman. Molecules (2019), 24 (6), 1124, DOI: 113390/molecules24061124. PDF

40) Photocatalytic Activity: Experimental Features to Report in Heterogeneous Photocatalysis. M.A. Hoque and M.I. Guzman. Materials (2018), 11 (10), 1190. DOI: 10.3390/ma11101990. PDF

39) An Overview of Dynamic Heterogeneous Oxidations in the Troposphere. E.A. Pillar-Little and M.I. Guzman. Environments (2018), 5 (9), 104, DOI: 10.3390/environments5090104. PDF

38) Cross Photoreaction of Glyoxylic and Pyruvic Acids in Model Aqueous Aerosol. S.-S. Xia, A.J. Eugene, and M.I. Guzman. Journal of Physical Chemistry A (2018), 122, 6457-6466, DOI: 10.1021/acs.jpca.8b05724. PDF

37) Enhanced Acidity of Acetic and Pyruvic Acids on the Surface of Water. A.J. Eugene, E.A. Pillar, A.J. Colussi, and M.I. Guzman. Langmuir (2018), 34, 9307-9313, DOI: 10.1021/acs.langmuir.8b01606. PDF and AudioSlides

36) Reply to "Comment on 'Reactivity of Ketyl and Acetyl Radicals from Direct Solar Actinic Photolysis of Aqueous Pyruvic Acid.'" A.J. Eugene and M.I. Guzman. Journal of Physical Chemistry A (2017), 121, 8741-8744, DOI: 10.1021/acs.jpca.7b08273. PDF and Supporting Information

35) Unmanned Aerial Systems for Monitoring Trace Tropospheric Gases. T.J. Schuyler and M.I. Guzman, Atmosphere (2017), 8 (10), 206, DOI: 10.3390/atmos8100206. PDF

34) Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: Protecting Cu2O from photocorrosion. M.E. Aguirre, R. Zhou, A.J. Eugene, M.I. Guzman, and M.A. Grela. Applied Catalysis B: Environmental (2017), 217, 485-493, DOI: 10.1016/j.apcatb.2017.05.058. PDF and AudioSlides

33) Oxidation of Substituted Catechols at the Air-Water Interface: Production of Carboxylic Acids, Quinones, and Polyphenols. E.A. Pillar and M.I. Guzman. Environmental Science and Technology (2017), 51, 4951-4959, DOI: 10.1021/acs.est.7b00232. PDF and AudioSlides

32) Reactivity of Ketyl and Acetyl Radicals from Direct Solar Actinic Photolysis of Aqueous Pyruvic Acid. A.J. Eugene and M.I. Guzman. Journal of Physical Chemistry A (2017), 121, 2924-2935, DOI: 10.1021/acs.jpca.6b11916. PDF and AudioSlides

31) Catalyzed Synthesis of Zinc Clays by Prebiotic Central Metabolites. R. Zhou, K. Basu, H. Hartman, C.J. Matocha, S.K. Sears, H. Vali, and M.I. Guzman. Scientific Reports (2017), 7, 533. DOI: 10.1038/s41598-017-00558-1. PDF

30) Nitrate Radicals and Biogenic Volatile Organic Compounds:Oxidation, Mechanisms and Organic Aerosol. N.L. Ng, S.S. Brown, A.T. Archibald, E. Atlas, R.C. Cohen, J.N. Crowley, D.A. Day, N.M. Donahue, J.L. Fry, H. Fuchs, R.J. Griffin, M.I. Guzman, H. Herrmann, A. Hodzic, Y. Iinuma, J.L. Jimenez, A. Kiendler-Scharr, B.H. Lee, D.J. Luecken, J. Mao, R. McLaren, A. Mutzel, H.D. Osthoff, B. Ouyang, B. Picquet-Varrault, U. Platt, H.O.T. Pye, Y. Rudich, R.H. Schwantes, M. Shiraiwa, J. Stutz, J.A. Thornton, A. Tilgner, B.J. Williams, R.A. Zaveri. Atmospheric Chemistry and Physics (2017), DOI: 10.5194/acp-17-2103-2017. PDF

29) Aqueous Photochemistry of Glyoxylic Acid. A.J. Eugene, S.-S. Xia, and M.I. Guzman. Journal of Physical Chemistry A (2016), 120, 3817-3826, DOI: 10.1021/acs.jpca.6b00225. PDF

28) Photocatalytic Reduction of Fumarate to Succinate on ZnS Mineral Surfaces. R. Zhou and M.I. Guzman. Journal of Physical Chemistry C (2016), 120, 7349-7357, DOI: 10.1021/acs.jpcc.5b12380. PDF and AudioSlides

27) Heterogeneous Oxidation of Catechol. E.A. Pillar, R. Zhou, and M.I. Guzman. Journal of Physical Chemistry A (2015), 119, 10349-10359, DOI: 10.1021/acs.jpca.5b07914. PDF

26) Secondary Organic Aerosol (SOA) Formation from β-pinene + NO3 System: Effects of Humidity and Peroxy Radical Fate. C.M. Boyd, J. Sanchez, L. Xu, A.J. Eugene, T. Nah, W.-Y. Tuet, M.I. Guzman, and N.L. Ng. Atmospheric Chemistry and Physics (2015), 15, 7497–7522. PDF

25) Catechol oxidation by ozone and hydroxyl radicals at the air-water interface. E.A. Pillar, R.C. Camm, and M.I. Guzman. Environmental Science & Technology (2014), 48, 14352-14360. PDF

24) CO2 Reduction under Periodic Illumination of ZnS. R. Zhou and M.I. Guzman. Journal of Physical Chemistry C (2014), 118, 11649-11656. PDF

23) A review of air-ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow. T. Bartels-Rausch, H.-W. Jacobi, T.F. Kahan, J.L. Thomas, E.S. Thomson, J.P.D. Abbatt, M. Ammann, J.R. Blackford, H. Bluhm, C. Boxe, F. Domine, M.M. Frey, I. Gladich, M.I. Guzman, D. Heger, Th. Huthwelker, P. Klan, W.F. Kuhs, M.H. Kuo, S. Maus, S.G. Moussa, V.F. McNeill, J.T. Newberg, J.B.C. Pettersson, M. Roeselova, J.R. Sodeau. Atmospheric Chemistry and Physics (2014), 14, 1587-1633. PDF

22) Negative production of acetoin in the photochemistry of aqueous pyruvic acid. A.J. Eugene, S. Xia, and M.I. Guzman. Proceedings of the National Academy of Science of the United States of America (2013), 110, E4274-E4275. PDF

21) Conversion of iodide to hypoiodous acid and iodine in aqueous microdroplets exposed to ozone. E.A. Pillar, M.I. Guzman, and J.M. Rodriguez. Environmental Science & Technology (2013), 47, 10971-10979. PDF

20) Organics in Environmental Ices: Sources, Chemistry, and Impacts. V.F. McNeill, A.M. Grannas, J.P.D. Abbatt, M. Ammann, P. Ariya, T. Bartels-Rausch, F. Domine, D.J. Donaldson, M.I. Guzman, D. Heger, T.F. Kahan, P. Klan, S. Masclin, C. Toubin, D. Voisin. Atmospheric Chemistry and Physics (2012), 12, 9653-9678. PDF

19) Chemisorption on Semiconductors: the Role of Quantum Corrections on the Space Charge Regions in Multiple Dimensions. F. Ciucci, C. de Falco, M.I. Guzman, S. Lee, and T. Honda. Applied Physics Letters (2012), 100, 183106. PDF

18) Concentration Effects and Ion Properties Controlling the Fractionation of Halides during Aerosol Formation. M.I. Guzman, R.R. Athalye and J.M. Rodriguez. Journal of Physical Chemistry A (2012), 116, 5428-5435. PDF

17) Abiotic Photosynthesis: From Prebiotic Chemistry to Metabolism. M.I. Guzman in Origins of Life: The Primal Selforganization. R. Egel et al. (eds.), Springer Verlag, Berlin-Heidelberg (2011), pp 85-105, DOI 10.1007/978-3-642-21625-1_4, ISBN 978-3-642-21624-4.

16) Second-generation products contribute substantially to the particle-phase organic material produced by β-caryophyllene ozonolysis. Y.J. Li, Q. Chen, M.I. Guzman, C.K. Chan, and S.T. Martin. Atmospheric Chemistry and Physics (2011), 11, 121-132. PDF

 15) From Prebiotic Chemistry to Metabolic Cycles. M.I. Guzman in Astrobiology: From the Big Bang to Civilizations. G.A. Lemarchand and G.Tancredi (ed.), (2010), pp. 223-247. ISBN 978-92-9089-163-5. Montevideo, UNESCO.  PDF

14) Photo-Production of Lactate from Glyoxylate: How Minerals Can Facilitate Energy Storage in a Prebiotic World. M.I. Guzman and S.T. Martin. Chemical Communications (2010), 46, 2265-2267. PDF

13) Thermochromism of Model Organic Aerosol Matter. A.G. Rincon, M.I. Guzman, M.R. Hoffmann, and A.J. Colussi. Journal of Physical Chemistry Letters (2010), 1, 368-373. PDF

12) Optical absorptivity versus molecular composition of model organic aerosol matter. A.G. Rincon, M.I. Guzman, M.R. Hoffmann, and A.J. Colussi. Journal of Physical Chemistry A (2009), 113, 10512-10520. PDF

10) Synthesis of Pyrimidines and Triazines in Ice: Implications for the Prebiotic Chemistry of Nucleobases. C. Menor-Salván, M. Ruiz-Bermejo, M.I. Guzman, S. Osuna-Esteban, S. Veintemillas-Verdaguer. Chemistry-A European Journal (2009), 15, 4411-4418. PDF

8) An overview of snow photochemistry: evidence, mechanisms and impacts. A.M. Grannas, A.E. Jones, J. Dibb, M. Ammann, C. Anastasio, H. Beine, M. Bergin, J. Bottenheim, C.S. Boxe, G. Carver, J.H. Crawford, F. Domine, M.M. Frey, M.I. Guzman, D. Heard, D. Helmig, M.R. Hoffmann, R.E. Honrath, L.G. Huey, M. Hutterli, H.W. Jacobi, P. Klan, B. Lefer, J. McConnell, J. Plane, R. Sander, J. Savarino, P.B. Shepson, W.R. Simpson, J. Sodeau, R. von Glasgow, R. Weller, E.W. Wolff, T. Zhu. Atmospheric Chemistry and Physics (2007), 7, 4329-4373. PDF

7) Photolysis of Pyruvic Acid in Ice: Possible Relevance to CO and CO2 Ice Core Record Anomalies. Guzman M.I., M.R. Hoffmann, and A.J. Colussi. Journal of Geophysical Research (2007), 112, D10123, doi:10.1029/2006JD007886. PDF

6) Cooperative Hydration of Pyruvic Acid in Ice. M.I. Guzman, L. Hildebrandt, A.J. Colussi, and M.R. Hoffmann. Journal of the American Chemical Society (2006), 128, 10621-10624. PDF

5) Acidity of Frozen Electrolyte Solutions. C. Robinson, C.S. Boxe, M.I. Guzman, A.J. Colussi, and M.R. Hoffmann. Journal of Physical Chemistry B (2006), 110; 7613-7616. PDF

4) Photoinduced Oligomerization of Aqueous Pyruvic Acid. M.I. Guzman, A.J. Colussi, and M.R. Hoffmann. Journal of Physical Chemistry A (2006), 110, 3619-3626. PDF

3) Photogeneration of Distant Radical Pairs in Aqueous Pyruvic Acid Glasses. M.I. Guzman, A.J. Colussi, and M.R. Hoffmann. Journal of Physical Chemistry A (2006), 110; 931-935. PDF

2) Characterization of the effect of white lead on some properties of proteinaceous binding media. SA Centeno, M.I. Guzman, A. Yamazaki-Kleps and C.O. Della Védova. Journal of the American Institute for Conservation (2004), 43, 139-150. PDF

1) Synthesis, stereochemistry and absolute configuration of deodarols and deodarones. M.B. Villecco, L.R. Hernandez, M.I. Guzman, C.A.N. Catalán, M.A. Bucio and P. Joseph-Nathan. Tetrahedron: Asymmetry (2001), 12 (21), 2947-2953. PDF