Atmospheric Chemistry

http://pubs.acs.org/doi/full/10.1021/acs.jpca.6b00225

Atmospheric aerosols, by backscattering solar radiation, attenuate the full impact of greenhouse gases. However, by absorbing sunlight, they warm the upper troposphere, thereby affecting its thermal stability, melting the mountain glaciers that feed major rivers, and reducing the persistence and reflectance of clouds. Clinical and epidemiological studies reveal that aerosols also induce detrimental health effects. More than half of the mass of tropospheric aerosols consists of complex organic matter largely derived from the chemical transformation of (natural and anthropogenic) gas emissions into species that can attach to seed particles. Additionally, organic matter is one of the main contributors to aerosol absorptivity in the near-UV−visible ranges. For the previous reasons, our laboratory studies the missing mechanisms of secondary organic aerosol (SOA) production from heterogeneous oxidations and sunlight photolysis. Our work explores how chemical reactions of atmospheric interest proceed "on surfaces" and "in water" under tropospheric conditions. These studies will contribute to understand the daily cycles of aerosol absorption observed in the field, and that may introduce a key feedback in the earth’s radiative balance. 

free web stats

References:

Conversion of Catechol to 4-Nitrocatechol in Aqueous Microdroplets Exposed to O3 and NO2. M.S. Rana, S.T Bradley, and M.I. Guzman. ACS ES&T Air (2023), DOI: 10.1021/acsestair.3c00001

Oxidation of Phenolic Aldehydes by Ozone and Hydroxyl Radicals at the Air-Solid Interface. M.S. Rana and M.I. Guzman. ACS Earth and Space Chemistry (2022), 6, 2900-2909, DOI: 10.1021/acsearthspacechem.2c00206.

Oxidation of Catechols at the Air-Water Interface by Nitrate Radicals. M.S. Rana and M.I. Guzman. Environmental Science and Technology (2022), 56, 15437-15448. DOI: 10.1021/acs.est.2c05640.

Interfacial Oxidative Oligomerization of Catechol. M.I. Guzman, E.A. Pillar-Little, and A.J. Eugene. ACS Omega (2022), 7, 36009–36016. DOI: 10.1021/acsomega.2c05290.

Reactivity of aminophenols in forming nitrogen-containing brown carbon from iron-catalyzed reactions. H.A. Al-Abadleh, F. Motaghedi, W. Mohammed, M.S. Rana, K.A. Malek, D. Rastogi, A.A. Asa-Awuku, and M.I. Guzman. Communications Chemistry (2022) 5, 112. DOI: 10.1038/s42004-022-00732-1. PDF 

Surface Oxidation of Phenolic Aldehydes: Fragmentation, Functionalization, and Coupling Reactions. M.S. Rana and M.I. Guzman. Journal of Physical Chemistry A (2022), 126, 6502-6516; DOI: 10.1021/acs.jpca.2c04963

Characteristics and health effects of particulate matter emitted from a waste sorting plant. A. Barkhordari, M.I. Guzman, G. Ebrahimzadeh, A. Sorooshian, M. Delikhoon, M.J. Rastani, S. Golbaz, M. Fazlzadeh, R. Nabizadeh, A.N. Baghani. Waste Management (2022), 150, 244-256. PDF 

Characteristics and assessing biological risks of airborne bacteria in waste sorting plant. A.N. Baghani, S. Golbaz, G. Ebrahimzadeh, M.I. Guzman, M Delikhoon, M.J. Rastani, A. Barkhordarie, R. Nabizadeh. Ecotoxicology and Environmental Safety (2022) 232, 113272. https://www.sciencedirect.com/science/article/pii/S0147651322001129 

Aqueous photochemistry of 2-oxocarboxylic acids: Evidence, mechanisms, and atmospheric impact. M.I. Guzman and A.J. Eugene. Molecules (2021), 26 (17), 5278, https://doi.org/10.3390/molecules26175278. PDF

Modes of transmission of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) and factors influencing on the airborne transmission: a review. M. Delikhoon, M.I. Guzman, R. Nabizadeh, A.N. Baghani. International Journal of Environmental Research and Public Health (2021), 18 (2), 395; DOI: 10.3390/ijerph18020395. PDF 

An Overview of the Effect of Bioaerosol Size in COVID-19 Transmission. M.I. Guzman. International Journal of Health Planning and Management (2020). DOI: 10.1002/hpm.3095. PDF

Dark iron-catalyzed reactions in acidic and viscous aerosol systems efficiently form secondary brown carbon. H.A. Al-Abadleh, M.S. Rana, W. Mohammed, and M.I. Guzman. Environmental Science and Technology (2021), 55, 209-219, DOI: 10.1021/acs.est.0c05678. PDF

Application of a Small Unmanned Aerial System to Measure Ammonia Emissions from a Pilot Amine-CO2 Capture System. T.J. Schuyler, B. Irvin, K. Abad, J.T. Thompson, K. Liu and M.I. Guzman. Sensors (2020), 20 (23), 6974; DOI: 10.3390/s20236974. PDF 

Atmospheric Measurements with Unmanned Aerial Systems (UAS). M.I. Guzman. Atmosphere (2020), 11 (11), 1208,  DOI: 10.3390/atmos11111208. PDF

Oxidation of phenolic aldehydes by ozone and hydroxyl radicals at the air-water interface. M.S. Rana and M.I. Guzman. Journal of Physical Chemistry A (2020), 124, 8822-8833, DOI: 10.1021/acs.jpca.0c05944. PDF

Production of Singlet Oxygen (1O2) During the Photochemistry of Aqueous Pyruvic Acid: The Effects of pH and Photon Flux under Steady State O2(aq) Concentration. A.J. Eugene and M.I. Guzman. Environmental Science and Technology (2019), 12425-12432, DOI: 10.1021/acs.est.9b03742.

Monitoring Tropospheric Gases with Small Unmanned Aerial Systems (sUAS) during the Second CLOUDMAP Flight Campaign. T.J. Schuyler, S.C.C. Bailey, and M.I. Guzman. Atmosphere (2019), 10 (8), 434, DOI:10.3390/atmos10080434. PDF

Crystal Structure of Zymonic Acid and a Redetermination of its Precursor, Pyruvic Acid. D. Heger, A.J. Eugene, S.R. Parkin and M.I. Guzman. Accepted for publication in Acta Crystallographica Section E: Crystallographic Communications (2019), E75, 858-862, DOI: 10.1107/S2056989019007072. PDF

Intercomparison of Small Unmanned Aircraft Systems (sUAS) Measurements for Atmospheric Science during the LAPSE-RATE Campaign. L. Barbieri, S.T. Kral, S.C.C. Bailey, A.E. Frazier, J.D. Jacob, J. Reuder, D. Brus, P.B. Chilson, C. Crick, C. Detweiler, A. Doddi, J. Elston, H. Foroutan, J. Gonzalez-Rocha, B.R. Greene, M.I. Guzman, A.L. Houston, A. Islam, O. Kemppinen, D. Lawrence, E.A. Pillar-Little, S.D. Ross, M. Sama, D.G. Schmale III, T.J. Schuyler, A. Shankar, S.W. Smith, S. Waugh, C. Dixon, S. Borenstein, and G. de Boer. Sensors (2019), 19 (9), 2179. DOI: 10.3390/s19092179. PDF

Using a Balloon Launched Unmanned Glider to Validate Real-Time WRF Modeling. T.J. Schuyler, S.M.I. Gohari, G. Pundsack, D. Berchoff, and M.I. Guzman. Sensors (2019), 19 (8), 1914, DOI: 10.3390/s19081914. PDF.

The Effects of Reactant Concentration and Air Flow Rate in the Consumption of Dissolved O2 During the Photochemistry of Aqueous Pyruvic Acid. A.J. Eugene and M.I. Guzman. Molecules (2019), 24 (6), 1124, DOI: 113390/molecules24061124. PDF

An Overview of Dynamic Heterogeneous Oxidations in the Troposphere. E.A. Pillar-Little and M.I. Guzman. Environments (2018), 5 (9), 104, DOI: 10.3390/environments5090104. PDF

Cross Photoreaction of Glyoxylic and Pyruvic Acids in Model Aqueous Aerosol. S.-S. Xia, A.J. Eugene, and M.I. Guzman. Journal of Physical Chemistry A (2018), 122, 6457-6466, DOI: 10.1021/acs.jpca.8b05724. PDF

Enhanced Acidity of Acetic and Pyruvic Acids on the Surface of Water. A.J. Eugene, E.A. Pillar, A.J. Colussi, and M.I. Guzman. Langmuir (2018),34, 9307-9313, DOI: 10.1021/acs.langmuir.8b01606. PDF

Reply to "Comment on 'Reactivity of Ketyl and Acetyl Radicals from Direct Solar Actinic Photolysis of Aqueous Pyruvic Acid.'" A.J. Eugene and M.I. Guzman. Journal of Physical Chemistry A (2017), 121, 8741-8744, DOI: 10.1021/acs.jpca.7b08273. PDF

Unmanned Aerial Systems for Monitoring Trace Tropospheric Gases. T.J. Schuyler and M.I. Guzman, Atmosphere (2017), 8 (10), 206, DOI: 10.3390/atmos8100206. PDF

Oxidation of Substituted Catechols at the Air-Water Interface: Production of Carboxylic Acids, Quinones, and Polyphenols. E.A. Pillar and M.I. Guzman. Environmental Science and Technology (2017), 51, 4951-4959, DOI: 10.1021/acs.est.7b00232. PDF

Reactivity of Ketyl and Acetyl Radicals from Direct Solar Actinic Photolysis of Aqueous Pyruvic Acid. A.J. Eugene and M.I. Guzman. Journal of Physical Chemistry A (2017), 121, 2924-2935, DOI: 10.1021/acs.jpca.6b11916. PDF

Nitrate Radicals and Biogenic Volatile Organic Compounds:Oxidation, Mechanisms and Organic Aerosol. N.L. Ng, S.S. Brown, A.T. Archibald, E. Atlas, R.C. Cohen, J.N. Crowley, D.A. Day, N.M. Donahue, J.L. Fry, H. Fuchs, R.J. Griffin, M.I. Guzman, H. Herrmann, A. Hodzic, Y. Iinuma, J.L. Jimenez, A. Kiendler-Scharr, B.H. Lee, D.J. Luecken, J. Mao, R. McLaren, A. Mutzel, H.D. Osthoff, B. Ouyang, B. Picquet-Varrault, U. Platt, H.O.T. Pye, Y. Rudich, R.H. Schwantes, M. Shiraiwa, J. Stutz, J.A. Thornton, A. Tilgner, B.J. Williams, R.A. Zaveri. Atmospheric Chemistry and Physics (2017), 17, 2103-2162, DOI: 10.5194/acp-17-2103-2017. PDF

Aqueous Photochemistry of Glyoxylic Acid. A.J. Eugene, S.-S. Xia, and M.I. Guzman*. Journal of Physical Chemistry A (2016), 120, 3817-3826, DOI: 10.1021/acs.jpca.6b00225. PDF

Heterogeneous Oxidation of Catechol. E.A. Pillar, R. Zhou, and M.I. Guzman*. Journal of Physical Chemistry A (2015), 119, 10349-10359, DOI: 10.1021/acs.jpca.5b07914. PDF

 Secondary Organic Aerosol (SOA) Formation from β-pinene + NO3 System: Effects of Humidity and Peroxy Radical Fate. C.M. Boyd, J. Sanchez, L. Xu, A.J. Eugene, T. Nah, W.-Y. Tuet, M.I. Guzman, and N.L. Ng. Atmospheric Chemistry and Physics (2015), 15, 7497–7522. PDF

Catechol oxidation by ozone and hydroxyl radicals at the air-water interface. E.A. Pillar, R.C. Camm, and M.I. Guzman*. Environmental Science & Technology (2014), 48, 14352-14360. PDF

A review of air-ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow. T. Bartels-Rausch, H.-W. Jacobi, T.F. Kahan, J.L. Thomas, E.S. Thomson, J.P.D. Abbatt, M. Ammann, J.R. Blackford, H. Bluhm, C. Boxe, F. Domine, M.M. Frey, I. Gladich, M.I. Guzman, D. Heger, Th. Huthwelker, P. Klan, W.F. Kuhs, M.H. Kuo, S. Maus, S.G. Moussa, V.F. McNeill, J.T. Newberg, J.B.C. Pettersson, M. Roeselova, J.R. Sodeau. Atmospheric Chemistry and Physics (2014), 14, 1587-1633. PDF

Negative production of acetoin in the photochemistry of aqueous pyruvic acid. A.J. Eugene, S. Xia, and M.I. Guzman*. Proceedings of the National Academy of Science of the United States of America (2013), 110, E4274-E4275. PDF

Conversion of iodide to hypoiodous acid and iodine in aqueous microdroplets exposed to ozone. E.A. Pillar, M.I. Guzman*, and J.M. Rodriguez. Environmental Science & Technology (2013), 47, 10971-10979. PDF

Organics in Environmental Ices: Sources, Chemistry, and Impacts. V.F. McNeill, A.M. Grannas, J.P.D. Abbatt, M. Ammann, P. Ariya, T. Bartels-Rausch, F. Domine, D.J. Donaldson, M.I. Guzman, D. Heger, T.F. Kahan, P. Klan, S. Masclin, C. Toubin, D. Voisin. Atmospheric Chemistry and Physics (2012), 12, 9653-9678. PDF 

Concentration Effects and Ion Properties Controlling the Fractionation of Halides during Aerosol Formation. M.I. Guzman*, R.R. Athalye and J.M. Rodriguez. Journal of Physical Chemistry A (2012), 116, 5428-5435. PDF

Second-generation products contribute substantially to the particle-phase organic material produced by β-caryophyllene ozonolysis. Y.J. Li, Q. Chen, M.I. Guzman, C.K. Chan, and S.T. Martin. Atmospheric Chemistry and Physics (2011), 11, 121-132. PDF

Thermochromism of Model Organic Aerosol Matter. A.G. Rincon, M.I. Guzman, M.R. Hoffmann, and A.J. Colussi. Journal of Physical Chemistry Letters (2010), 1, 368-373. PDF

Optical absorptivity versus molecular composition of model organic aerosol matter. A.G. Rincon, M.I. Guzman, M.R. Hoffmann, and A.J. Colussi. Journal of Physical Chemistry A (2009), 113, 10512-10520. PDF

An overview of snow photochemistry: evidence, mechanisms and impacts. A.M. Grannas, A.E. Jones, J. Dibb, M. Ammann, C. Anastasio, H. Beine, M. Bergin, J. Bottenheim, C.S. Boxe, G. Carver, J.H. Crawford, F. Domine, M.M. Frey, M.I. Guzman, D. Heard, D. Helmig, M.R. Hoffmann, R.E. Honrath, L.G. Huey, M. Hutterli, H.W. Jacobi, P. Klan, B. Lefer, J. McConnell, J. Plane, R. Sander, J. Savarino, P.B. Shepson, W.R. Simpson, J. Sodeau, R. von Glasgow, R. Weller, E.W. Wolff, T. Zhu. Atmospheric Chemistry and Physics (2007), 7, 4329-4373. PDF

Photolysis of Pyruvic Acid in Ice: Possible Relevance to CO and CO2 Ice Core Record Anomalies. Guzman M.I., M.R. Hoffmann, and A.J. Colussi. Journal of Geophysical Research (2007), 112, D10123, doi:10.1029/2006JD007886. PDF

Cooperative Hydration of Pyruvic Acid in Ice. M.I. Guzman, L. Hildebrandt, A.J. Colussi, and M.R. Hoffmann. Journal of the American Chemical Society (2006), 128, 10621-10624. PDF

Acidity of Frozen Electrolyte Solutions. C. Robinson, C.S. Boxe, M.I. Guzman, A.J. Colussi, and M.R. Hoffmann. Journal of Physical Chemistry B (2006), 110; 7613-7616. PDF

Photoinduced Oligomerization of Aqueous Pyruvic Acid. M.I. Guzman, A.J. Colussi, and M.R. Hoffmann. Journal of Physical Chemistry A (2006), 110, 3619-3626. PDF

Photogeneration of Distant Radical Pairs in Aqueous Pyruvic Acid Glasses. M.I. Guzman, A.J. Colussi, and M.R. Hoffmann. Journal of Physical Chemistry A (2006), 110; 931-935. PDF